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Long jumps in the strong-collision model

R. Ferrando,* F. Montalenti, R. Spadacini, and G.E. Tommei
INFM and CFSBT/CNR, Dipartimento di Fisica dell’ Universita` di Genova, via Dodecaneso 33, 16146 Genova, Italy

~Received 14 September 1999; revised manuscript received 14 February 2000!

The jump-length probability distribution for a classical particle diffusing in a periodic potential is calculated
in the framework of a strong-collision model, where each collision of the particle with the thermal bath
reequilibrates the velocity. Exact numerical results are obtained by the matrix-continued-fraction method, and
two different analytical approximations are developed. In the first approximations it is assumed that an acti-
vated particle is always retrapped in the cell where it suffers the first collision; in the second approximation it
is assumed that only the collisions giving a final total energy which is lower than the activation barrier are
effective for retrapping. This second analytical approximation is in excellent agreement with the numerical
data.

PACS number~s!: 05.40.2a, 05.60.–k, 68.35.Fx
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I. INTRODUCTION

The diffusion of classical particles in periodic potentials
a topic of great interest in many fields of physics, chemis
and biology@1–4#. In the most popular model, diffusion i
treated as a Brownian motion, which can be described
means of some form of the Langevin~or of the Fokker-
Planck! equation@2#. In the simplest Langevin equation, th
particle is coupled to the environment by a frictionh and by
a white noise, which are related to each other by
fluctuation-dissipation theorem. In this model, at low fri
tion, the particle changes its energy gradually, by suffer
many weak collisions with the heat bath. The velocity of t
particle is slightly modified by a single collision, and the
malization occurs because of the large number of those
lisions.

On the other hand, it may happen that the particle in
acts with the heat bath by strong and well-separated c
sions, moving in a deterministic way in between. In this ca
the key point is the determination of the effect of one co
sion on the particle motion. A reasonably simple approxim
tion is to assume that after each collision the velocity of
particle is suddenly thermalized, i.e., after a collision t
final velocity is extracted from the Maxwell distribution a
the given temperatureT. This gives rise to the Bhatnaga
Gross, and Krook~BGK! @5,1# kinetic equation for the prob
ability density in phase spacef (x,v,t):

] f

]t
1v

] f

]x
1

F~x!

m

] f

]v
5hFM ~v !E

2`

1`

f ~x,v,t !dv

2 f ~x,v,t !G , ~1!

whereh is the collision frequency,F(x) is the periodic force
coming from the potentialU(x), m is the mass of the par
ticle, andM (v) is the Maxwell distribution
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M ~v !5S m

2pkBTD 1/2

expS 2
mv2

2kBTD . ~2!

Equation~1! can be derived also along the lines developed
Ref. @6# by making the above assumption on the effect
particle-bath collisions. A strong collision model, where t
effect of each collision is to thermalize not only the veloc
~as strictly required in the BGK model! but also the position
of the particle, has been recently studied by Bicout et al.@7#.

The BGK model can be proposed for the description
the classical diffusion of atoms or molecules in periodic s
tems~like in the case of adatoms on surfaces or in zeoli
@6#! in the cases in which the following physical assumptio
are fulfilled.

~a! The energy exchange between the diffusing parti
and the thermal bath can be modeled by well separated
lisions.

~b! Each of these collisions leads to a quite strong ene
exchange, of the order ofkBT.

Neither ~a! nor ~b! can be justified rigorously from a mi
croscopic point of view; however, these assumptions can
considered reasonable approximations when the vibratio
period of the diffusing particle in the well is much short
than the typical inverse frequencies of the substrate phon
@6#. Roughly speaking, the latter condition is likely to b
fulfilled when the mass of the adparticle is much smal
than the mass of the substrate atoms. On the other hand
white-noise Langevin approach@8–10# is valid in the oppo-
site conditions, i.e., when the characteristic vibrational tim
of the adparticle are slower than those of the substrate. T
happens usually when the adsorbate has a larger mass o
same mass as the substrate atoms@11#; even in the case o
light adsorbates the time-scale condition leading to
Langevin approximation can be fulfilled@9#. However, we
remark that the differences between the Langevin and
BGK approaches are significant only at intermediate a
small h, since the two equations tend to the same limit~the
Smoluchowski equation! for h→` @1#.

When a particle moves in a periodic potential, differe
diffusion mechanisms are possible, depending on the ba
height ~compared to the thermal energykBT) and on the
ic
6344 ©2000 The American Physical Society
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PRE 61 6345LONG JUMPS IN THE STRONG-COLLISION MODEL
strength of the coupling between the particle and the ther
bath~in our case, depending on the collision frequencyh). If
the barrier is sufficiently high, the particle spends the m
part of the time by making small-amplitude oscillatio
around the well bottoms, and sometimes is activated
makes a jump from a well to another~jump diffusion!. This
happens when the barrierEA is larger of about 4kBT @8#.
Once the particle has escaped a well, it may be retrappe
a nearest-neighbor one~thus making a single jump! or it may
make a flight after which is captured in a cell which is f
away from the cell of departure~in this case making what we
shall call a long jump!. Long jumps in surface diffusion re
cently attracted noticeable interest both from the experim
tal and the theoretical point of views. In fact, experiments
the field of surface diffusion have shown that adsorbed ato
can make a rather large percentage of long jumps in syst
like Pd/W~211! @12# and Pt/Pt~110! @13#. From a theoretical
point of view, many investigations about long jumps ha
been carried out in the framework of the Langevin~Fokker-
Planck! model @14,15,8–10,16–18#. Here, we develop a
theory of long jumps on the basis of the BGK kinetic mod
~Eq.~1!!. Our approach is similar to the one by Beenakk
and Krylov ~BK! in Ref. @19#. In their treatment, BK consid
ered a particle with an energykBT above the maximumUM
of the potentialU(x) ~an unboundparticle in BK terminol-
ogy!. They assumed that any collision of an unbound part
with the thermal bath~phonons! leads to retrapping~thus
becoming aboundparticle!, neglecting the role of unbound
unbound transitions, and they calculated the jump-len
probability distribution~JLPD!. In our treatment@i.e., in Eq.
~1!#, we do not separate unbound-bound transitions fr
unbound-unbound transitions, but we assume that the e
of any collision is to reequilibrate the velocity distribution

In the following, we calculate the JLPD for the model
Eq. ~1! by two different methods. The first method is nume
cal. It is based on the solution of the kinetic equation by
matrix-continued-fraction method~MCFM! @1#, which al-
lows the calculation of the dynamic structure factorSs(q,v).
FromSs , the JLPD is extracted by making a Fourier analy
of the energy width of the quasielastic peak@8#. This numeri-
cal method gives exact results, but it can be applied only
limited ranges of barriers and collision frequencies. In fac
becomes very computationally demanding at high barr
and/or low collision frequencies. In some cases, the di
simulation of the model by means of molecular-dynam
techniques~see the following! could be more convenient
However, also the direct simulation suffers from the sa
drawbacks as the MCFM solution. For the above reasons
the following we develop analytical approximations and t
their reliability against the exact numerical results. In p
ticular we show that it is possible to build up a rather sim
analytical treatment which gives very accurate results.

The paper is structured as follows. In Sec. II we descr
the numerical method of solution. In Sec. III we develop t
analytical treatment and in Sec. IV we compare numer
and analytical results. Section V contains the conclusion

II. NUMERICAL METHOD

As said in the introduction, a reliable numerical meth
for calculating the JLPD is based on the Fourier analysis
al
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the decay functionf (q) which coincides, in the jump-
diffusion regime, with the half-width~in frequency! of the
quasielastic peak of the dynamic structure factorSs(q,v)
@8#. In the following, we give only a brief summary of th
method. The details can be found in Refs.@1,8,20#. Ss(q,v)
can be calculated via a matrix-continued-fraction expans
@1#. Ss(q,v) is defined by

Ss~q,v!5
1

2pE2`

1`

^exp$ iq@x~ t !2x~0!#%&exp~2 ivt !dt.

~3!

In order to calculate the characteristic function in the integ
the computation of the conditional probabilit
Pc(x,v,t/x0 ,v0,0) is needed. The latter is the solution of E
~1! with the initial condition Pc(x,v,0/x0 ,v0,0)5d(x
2x0)d(v2v0). Pc is then expanded on an orthonormal b
sis, with the aid of Bloch’s theorem for the spatial part and
Hermite functions in the velocity part. The decay functio
f (q) is recovered fromSs(q,v) by the following limit @8#:

f ~q!5 lim
v→0

vFSs~q,v!

Ss~q,0!
21G1/2

. ~4!

The JLPD follows from the Fourier analysis off (q); specifi-
cally the probabilityP(n) of a jump of lengthn is given by

P~n!52
2a

pr j
E

0

p/a

f ~q!cos~naq!dq, ~5!

where the jump rater j is obtained as

r j5
a

pE0

p/a

f ~q!dq. ~6!

The results concerning the jump rater j were already shown
in Ref. @21# and they will not be repeated here; in the fo
lowing we focus on the jump-length distribution. After som
algebra@1,20#, it turns out that, in the first Brillouin zone,Ss
is given by

Ss~q,v!5N ReH (
p,r 52`

`

G̃pr~k,iV!M pMr* J , ~7!

whereV5(a/2p)(m/kBT)1/2v, q52pk/a, uku,1/2, M p is
given by

M p5
1

aE2a/2

a/2

dx expS 2
V~x!

2kBTDexpS 2ppx

a D , ~8!

and N is a normalization factor. The Green functionG̃ is
given by

G̃~k,iV!5@ iVI1B1@~ iV1g!I12B1@~ iV1g!I

1 . . . #21B2#21B2#21. ~9!

In the above equation the normalized collision frequencyg is
defined as
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g5h
a

2p
A m

kBT
, ~10!

I is the identity matrix andB6 are given, for an even poten
tial, by

Bpr
6 ~k!5~p1k!dpr6

1

4pE2p

1p

dx F~x!sin@~r 2p!x#.

~11!

The MCFM becomes very cumbersome at high barriers
at low friction. This is especially true in the BGK mode
where the continued fraction converges much slower tha
the Langevin~Fokker-Planck! case. In fact, even atg50.1
more than 1000 iterations in Eq.~9! are necessary to obtain
good convergence, whereas in the Fokker-Planck case
iterations were sufficient to guarantee the same degre
numerical accuracy. Because of that, atg,0.1 it may be
convenient to solve the BGK model by means of direct sim
lation ~while the MCFM is more precise and convenient
higher friction!. In the direct simulation the particle move
deterministically in the periodic field of force by the Newto
equations of motion, until it suffers a collision. In fact,
each time stepdt (dt!h21), the particle has a probability
hdt of experiencing a collision with the thermal bath. Aft
the collision, the velocity of the particle is extracted ra
domly from the Maxwell distribution at the given temper
ture. This procedure essentially coincides with the one of
Andersen thermostat in canonical molecular-dynamics si
lations~see for example@22#!. We have used the direct simu
lation in order to check the MCFM results. All the resu
reported in the figures are, however, obtained by the MC
method.

Finally, we remark that, even by direct simulation,
would be very difficult to accumulate a reasonable statis
of events atg,1023, because jumps become less frequen
g decreases. Moreover, both numerical methods bec
practically useless at high barriers (EA.20kBT), where ana-
lytical approaches are needed~both for Langevin, as alread
developed in@14,10,23# and for BGK, where an analytica
formulation is still lacking!. For this reason, we devote th
following section to the development of accurate analyti
expressions for the probability distribution of jump lengt
in the BGK model.

III. ANALYTICAL SOLUTION FOR THE JUMP-LENGTH
PROBABILITY DISTRIBUTION

Let us consider a particle in a periodic potentialU(x).
The particle is initially at equilibrium in a lattice cell~near

FIG. 1. Periodic potentialU(x); the particle starts from the ce
around pointP and then crosses the barriers in 0,1,2, . . . .
r
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point P in Fig. 1! and then makes a jump~for example, to the
right!. Let E0 be the initial kinetic energy at the crossing
the 0th saddle point~see Fig. 1!, and taket50 at the cross-
ing of this saddle point. By definition,

E05
1

2
mv0

2 . ~12!

The total energy att50 is Etot

Etot5UM1E0 , ~13!

where UM is the potential energy at saddle points. Let
define

«5
E0

kBT
, u~x!5

U~x!

kBT
, uM5

UM

kBT
. ~14!

The probablity of suffering a collision during the timedt is
dP̃

dP̃5hdt5h
dx

v~x,«!
, ~15!

where

v~x,«!5A2kBT

m
@«1uM2u~x!# . ~16!

Now, we can proceed according to two different approxim
tion schemes. In the first case, we assume that all collis
are effective, in the sense that the particle is always trap
in the cell where it suffers its first collision. This approxim
tion is analogous to the one by BK@19# and overestimates
the probability of single jumps. In this case, the probabil
of not being trapped up to thenth saddle point~which is at
distancex5na and it is crossed at timetn) is

Q̃~n,«!5exp~2htn!5expS 2hE
0

na dx

v~x,«! D
5exp@2nw̃~«!#, ~17!

where

w̃~«!5hE
0

a dx

v~x,«!
. ~18!

The probability of being trapped in thenth cell is then

P̃~n,«!5Q̃~n21,«!2Q̃~n,«!. ~19!

Now we have to average over the initial energy distributio
which is exponential~as checked by direct simulation!, and
find

P̃~n!5^P̃~n,«!&5E
0

`

d«exp~2«!P̃~n,«!. ~20!

Now we average the arguments of the exponentials ins
of averaging the exponentials themselves:
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PRE 61 6347LONG JUMPS IN THE STRONG-COLLISION MODEL
P̃~n!5^exp@2~n21!w̃~«!#2exp@2nw̃~«!#&

.exp~2~n21!w̃ !2exp~2nw̃ !, ~21!

where

w̃5^w̃~«!&. ~22!

The exchange between the average and the exponential
not introduce any significant difference in the results. Inde
except for a weak logarithmic divergence at«→0, w̃(«)
varies much more slowly than« @in fact, at large«, w̃(«)
;«21/2]; if w̃(«) would have been a constant, the exchan
between the average and the exponential would have b
exact. However, one can retain the average outside of
exponentials and use the second member of Eq.~21! to com-
puteP̃(n), instead of the third member. This is simply a litt
bit more expensive from a computational point of vie
~however, much less expensive than MCFM or direct sim
lation!, but we have checked that it does not introduce a
significant change in the results in the parameter range
we consider in the following. The same considerations ap
also to the derivation ofP* (n) ~see the following!.

Explicitly, the formula forw̃ is

w̃5hA m

2kBTE0

`

d«exp~2«!E
0

a dx

A«1uM2u~x!
.

~23!

A second approximation scheme relies on the assump
that only the collisions in which the final energy is belo
UM are effective. In this case, the particle is not trapp
always in the cell where it experiences its first collision, b
it is trapped there only if the collision is effective, i.e., if i
final velocity v f after that collision~experienced at pointx)
satisfies

1

2
mv f

21U~x!<UM . ~24!

This gives an effective collision frequencyhe f f(x)

he f f~x!52hE
0

A(2kBT/m)[uM2u(x)]
M ~v !dv

5h erf@AuM2u~x!#, ~25!

whereM (v) is the Maxwell equilibrium distribution, and

erf~x!5
2

Ap
E

0

x

dt exp~2t2!. ~26!

The probability of suffering an effective collision is thus

dP* 5he f f~x!
dx

v~x,«!
5h erf@AuM2u~x!#

dx

v~x,«!
.

~27!

Following the same lines as before, we find

P* ~n!5exp@2~n21!w* #2exp~2nw* ! ~28!
oes
,

e
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-
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n

d
t

with

w* 5hA m

2kBTE0

`

d«exp~2«!E
0

a

dx
erf @AuM2u~x!#

A«1uM2u~x!
.

~29!

Equations~28! and ~29! underestimatethe probability of
single jumpsP(1), since they assume that particles expe
encing a noneffective collision proceed undisturbed as
they had not collided at all. We recall that Eqs.~21! and~23!
lead to anoverestimateof P(1). As we shall show in the
following by direct comparison with the numerical result
P* (n) is a much better approximation ofP(n) than P̃(n).

IV. COMPARISON OF THE ANALYTICAL
APPROXIMATIONS WITH THE NUMERICAL RESULTS

In the following we compare the analytical solutions
Sec. III with the exact numerical results from the Four
analysis of the decay functionf (q) ~see Sec. II! in the case
of a cosine potential:

U~x!5A@12cos~x!#, ~30!

having defined the parameterg

g5
A

2kBT
5

EA

4kbT
, ~31!

(EA52A is the activation barrier! one has

w̃5
g

A2
E

0

`

d«exp~2«!E
0

2p dz

A«12g@11cos~z!#
, ~32!

w* 5
g

A2
E

0

`

d«exp~2«!E
0

2p

dz
erf$A2g@11cos~z!#%

A«12g@11cos~z!#
,

~33!

with the normalized frictiong given by Eq.~10!.
In Fig. 2 the behavior ofP(n) for n51,2, . . . ,8 is re-

ported as a function ofg at fixed activation barrier (g
51.5, EA56 kBT). The symbols correspond to the exact n
merical results and the lines to the analytical approximat
P* (n) of Eqs. ~28! and ~29!. As expected, the single-jum
probability P(1) decreases withg, because an increase o
the collision frequency causes an easier retrapping. Mo
over, eachP(n) for n>2 has a maximum which is shifted t
lower and lowerg at increasingn. This is analogous to wha
happens in the case of the Langevin~Fokker-Planck! model
@8# and can be easily understood by noticing that theP(n),
n>2 tend to 0 both atg→` ~retrapping is always in the firs
cell! and atg→0 ~retrapping tends to be equally likely i
any cell!.

Concerning the comparison of the analytical results w
the numerical data, it is evident that theP* (n) are very
accurate in a wide range ofg, and also for largen. On the
other hand, the approximationP̃(n) @Eqs. ~21! and ~23!# is
less satisfactory, as can be seen in Fig. 3. There, the num
cal results forP(1) ~black circles! andP(2) ~black squares!
are compared toP* (1) ~full line!, P* (2) ~dash-dotted line!,
P̃(1) ~dashed line!, and P̃(2) ~dotted line!.
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As underlined in Sec. III, the numerical results lie alwa
in between the two analytical approximations. However, th
almost coincide with theP* , especially at largeg. This
shows that retrapping is not occurring at each collision;

FIG. 2. Jump probabilities for lengths from one to eight ce
The symbols refer to the exact numerical results@P(n)#, whereas
the full lines correspond to the analytical approximationP* (n).
The error bars on the numerical points are smaller than the siz
the dots.

FIG. 3. Comparison of the analytical approximationsP* (n) and

P̃(n) with the exact numerical resultsP(n) for n51 and 2. The
black circles correspond toP(1), the full line to P* (1), and the

dashed line toP̃(1); theblack squares correspond toP(2), and the

dash-dotted line toP* (2), and thedotted line toP̃(2). Theerror
bars on the numerical points are smaller than the size of the d
y

e

retrapping frequency at a given pointx is very well approxi-
mated by the effective collision frequencyhe f f(x) of Eq.
~25!.

In Fig. 4 we report the behavior ofP(n) at fixedg andg
for two differentg values. The numerical results are repr
sented by black circles, and the open circles correspon
the P* (n) @Eqs. ~28! and ~29!#. The decay withn is very
close to an exponential, with small deviations~i.e., a slightly
faster decay! at smalln. The analytical approximation is ver
good ~and it is exactly exponentially decaying!. The devia-
tions from an exponential decay were much more eviden
the case of the Fokker-Planck equation@8#, and were attrib-
uted to the nonequilibrium distribution~at low g) of the
particles coming out from the well of departure. Here, t
direct simulation of the model has not revealed any deviat
from the Maxwell distribution for the escaping particles.

FIG. 5. P* (n) for n51,2, . . . ,8 asfunctions of the energy bar
rier at fixed collision frequency.

.

of

s.

FIG. 4. Jump probabilities at fixed barrier (g51.5, EA

56kBT) and collision frequencyg. The black circles correspond t
the exact numerical dataP(n) and the open circles to the analytic
result P* (n). The error bars on the numerical points are sma
than the size of the dots.
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PRE 61 6349LONG JUMPS IN THE STRONG-COLLISION MODEL
Finally, in Fig. 5, the behavior ofP* (n) for n
51,2, . . . ,8 isreported as a function ofg at fixedg. Only the
analytical results are reported because the numerical solu
is not feasible at very large barriers. We tested~up to g54,
the highest value at which the numerical calculations req
a reasonable effort! that the accuracy of the analytical a
proximation improves as the activation barrier is raised.
notice that the probability of single jumpsP(1) decreases
when the barrier is raised at fixedh and temperature~i.e.,
when g is increased keepingg fixed!. Therefore, in the
strong-collision model, we have more and more long jum
increasing the barrier height. This is the opposite of w
happens in the case of Fokker-Planck@8#, and can be under
stood in the following terms. In the strong-collision mod
to the first approximation, the probability of being trapped
the first cell, thus making a single jump, increases with
time spent in the cell, which is given byw̃/h @see Eq.~18!#.
This time decreases at larger barriers~if the other parameters
are kept fixed! because the velocityv(x,«) increases with
the barrier: at larger barriers, the particle suffers a stron
acceleration towards the bottom of the well. On the contra
in the Fokker-Planck case, the probability of being trapped
the first cell increases with the dissipation parameterD ~see
for example@8#! defined as

D~«!5
h

kBTE0

a

dx v~x,«! ~34!

which contains the velocity at the numerator and thus ha
opposite behavior at increasing barrier. In fact, in t
Fokker-Planck case, due to the frictional force2hv, a larger
velocity causes a larger dissipation and a larger retrapp
probability.

V. CONCLUSIONS

In this paper the jump-length probability distribution for
particle diffusing in a periodic potential in the stron
.
n-
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collision model ~in which each collision with the therma
bath suddenly thermalizes the velocity! has been calculated
with different methods, numerical and analytical. The n
merical results have been obtained mainly by the mat
continued-fraction method, which becomes cumbersome
high barriers and/or low collision frequencies. On the oth
hand, also the direct simulation of the model can cover o
a limited range of parameters with a reasonable comp
tional effort. Because of that, the development of relia
analytical approximations is important. Two different a
proximations have been proposed. In the first approximat
it has been assumed that all the particle is always trappe
the cell where it suffers its first collision, thus identifying, fo
a unboundparticle, the collision frequency and the retra
ping frequency. It can be easily understood that this appro
mation overestimates the percentage of single jumps, as
confirmed by the comparison with the numerical results.
second~and better! approximation has been obtained wi
the assumption that only a part of the collisions are effecti
i.e., those collisions after which the total energy of the p
ticle lies below the saddle-point energy. This leads to
definition of an effective collision frequency, which is iden
tified with the retrapping frequency. In this case, the resu
are very close to the exact numerical ones, and the sin
jump fraction is underestimated. The fact that the seco
approximation works better than the first can be underst
by noticing that the second approximation treats practica
in an exact way what happens at the first collision, wher
the first approximation is not even exact at this stage.
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